
CPS331 Lecture: Bayesian Learning
last revised November 7, 2018

Objectives:  

1. To introduce naive Naieve Bayesian learning
2. To introduce Bayesian networks

Materials: 

1. Projectable of Bayesian network for Alarm problem
2. Projectable of the above with CPTs (from Russell & Norvig)
3. Projectable of computation of P(Burglary | JohnCalls and MaryCalls)
4. Projectable of data counts for Wisconsin high school senior college plans survey
5. Projectable of two Bayesian networks inferred from data
6. Projectable of Bayesian network with hidden variable

I. Naieve Bayesian Learning

A.The name "Bayesian" is given to an interpretation of probability 
theory.   "Bayesian learning" is the name given to an approach to 
machine learning that seeks to find Bayesian probabilities based on 
patterns in data.

B. Consider the following problem:

1. We have available a medical database with 10,000 descriptions of 
individual patients.  Each patient is described in terms of the 
presence or absence of 20 symptoms (i.e. 20 boolean values) and 
the patient's diagnosis or an indication that the patient is not sick.

2. Suppose a patient comes along who has a fever, coughing, and 
chills.  What is the likelihood that these symptoms are due to 
having the flu - i.e. what is  
 

P(flu | fever ^ coughing ^ chills)

 
�1



3. The database is of little help to us directly.  If there are 20 different 
boolean values in each row in the database representing the 
presence or absence of different symptoms, then there are 220  (over 
1 million) possible combinations.  In a database of 10,000 entries, it 
is unlikely that this precise combination of symptoms appears - and 
even if it does, the number of times it appears is likely very small 
and we can't get a reliable estimate of the probability we want but 
just counting cases.

4. But we can make use of Bayes' theorem to get information that we can 
extract from the database:  
 

P(flu | fever ^ cough ^ chills) = P(flu) * P(fever ^ cough ^ chills  | flu)  
   --------------------------------------------  

P(fever ^ cough ^ chills)  

a) We can estimate P(flu) by counting rows in the database where 
the diagnosis is flu, and dividing by the total number of rows.

b) In similar fashion, we can estimate P(fever ^ cough ^ chills) by 
counting the rows in the database where these three appear 
together (perhaps with other symptoms and various diagnoses) 
and dividing by the total number of rows.

c) But what about P(fever ^ cough ^ chills  | flu)?  This would seem 
to pose the same challenge as our original problem, since we are 
looking for rows where these three appear with flu - possibly an 
empty or very small set.

5. P(fever ^ cough ^ chills  | flu) is called a joint probability.  Ordinarily, we 
cannot compute a joint probability by simply knowing the individual 
probabilities if the individual items are not independent - i.e. P(A ^ B) is 
ordinarily not equal to P(A) * P(B)  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Example: In Fall, 2018, 17 students are taking Discrete Math (15 CS 
majors) and 11 are taking Software Systems (10 CS majors).  Five are 
taking both (all CS majors).  
 
The probability that a given Gordon student is taking Discrete Math is 
P(D) = 17/1600 = .01, 
The probability that a given Gordon student is taking Software Systems is  
P(S) = 11/1600 = .007.   
 
But the probability that a given Gordon student is taking both is not 
.01 * .007 = .00007 
Rather, it is  
P(D^S) = 5/1600 = .003 

a) In the diagnostic case we have been considering, it is not true 
that the prior probabilities of symptoms (e.g. cough and fever) 
are statistically independent.  The likelihood of someone who has 
a fever also having a cough is more than the likelihood of 
someone just having a cough.  

b) However, this dependency virtually goes away in the case where 
the person has a disease like the flu - i.e. a person who has the flu 
and has a fever is not more likely to have a cough than is the 
person who has the flu without a fever.

c) The approach known as Naieve Bayes assumes that statistical 
dependencies go away for posterior probabilities conditioned on 
the same variable - i.e. it calculates P(fever ^ cough ^ chills  | flu) 
as P(fever | flu) * P(cough | flu) * P(chills | flu) - quantities that 
can be found simply by counting rows in the database.  

C. Naieve Bayes does not give a totally correct figure, but rather one that 
generally is close enough to do something like aiding diagnosis.  As 
one statistician put it "All models are wrong, but some are useful".  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Continuing our example: The probability that a CS major is taking 
Discrete is  
P(D | CS) = 15 / 51 = 0.29 
and that a CS major is taking Software Systems is  
P(S | CS) = 10/51 = 0.2 
The probability that a CS major is taking both is  
P(D ^ S | CS) = 5/51 = 0.1 
Naieve Bayes would estimate this as 0.29 * 0.2 = .06 - not exactly 
correct, but much closer than what we would get using the probabilities 
without the dependency on being a CS major

D.Naieve Bayes is widely used in machine learning problems - e.g. it is 
heavily used by Google, is used by many spam filters, etc.

II.Bayesian Networks (also known as Belief Networks)

A.To understand what a Bayesian network is, we will  use an example 
that is not machine learning. Then we'll look at using machine learning 
to learn Bayesian networks - but first we need to know what a Bayesian 
network is.

B.  Consider the following problem (formulated by Judea Pearl, who 
coined the term Bayesian network):  

1. He is concerned about Burglaries.

2.  He installs an Alarm in his house that is supposed to sound if a 
burglary occurs.  It is sometimes also set off by an a minor 
earthquake.  (Pearl lived in the Los Angeles area)

3. Because the individual does not work close to home, he asks two 
neighbors - John and Mary - to call him if they hear the alarm go off. 

a) This can be described by the following structure of causes, which is 
called a Bayesian network.   (The directed links denote causality)  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PROJECT

b) For each of the nodes, we can construct a conditional probability 
table that shows the conditional probability for a given node 
having the value true based on various combinations of the 
values of the parent nodes.

(1)Neither Burglary nor Alarm has a parent, so the table for each 
contains just one a-prior probability - derivable from police 
data for one and historical seismic data for the other - say  
 
P(B) = .001 
P(E) = .002 
 
(Note how we will abbreviate to B and E to save writing)
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(2)Alarm has two parents, so we need conditional probabilities for of 
the four possible combinations of the values of the parents, based 
on how well the alarm functions;  
 
B E P(A) 
 
T T 0.95 [ estimated that alarm catches 95% of burglaries ]  
T F 0.95 [ ditto ]  
F T 0.29 [ false alarm cause by earthquake ]  
F F 0.001 [ totally false alarm ]

(3) John Calls depends only on Alarm.  He almost always hears 
the alarm when it goes off, but sometimes confuses the 
telephone ringing with the alarm and calls then too.  His 
behavior is described by the following CPT:  
 
A P(J) 
 

T .90 
F .05 [ false alarm ]

(4)Mary Calls also depends only on Alarm.  She likes loud 
music and sometimes misses the alarm.  This is the CPT for 
Mary: 
 
A P(M) 
 

T .70 
F .01 [ relatively rare false alarm ]

(5)This can all be summarized by the following diagram  
 
PROJECT Bayesian network with conditional probability 
tables  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4. Now suppose both John and Mary call.  What is the probability that 
Burglary has occurred?

a) We want to calculate P(Burglary | JohnCalls ^ MaryCalls).  If we 
used standard probabilistic inference, we would have to make 
use of 32 joint probabilities, many of which would require 
considerable effort to find :  
 
¬ Burglary ^ ¬ Earthquake ^ ¬ Alarm ^ ¬ John  ^ ¬ Mary  
¬ Burglary ^ ¬ Earthquake ^ ¬ Alarm ^ ¬ John  ^ Mary  
¬ Burglary ^ ¬ Earthquake ^ ¬ Alarm ^ John  ^ ¬ Mary  
....

b) But the Bayesian network allows us to compute the result more 
simply, by taking advantage of parent-child (causality) 
relationships as noted above.  
 
Thus, instead of needing 32 probabilities, some of which are hard 
to figure  out, the causal relationships reduce the number we need 
to just the 10 given above, all fairly easy to figure  out.  For 
networks with more nodes, the impact of using a Bayesian 
network will be even greater because the number of joint 
probabilities grows exponentially with the number of nodes, 
while the number of causal parent-child relationships tends to 
grow linearly.  

(1)We wish to compute P(B | J ^ M ).  
 
PROJECT Computation

(2)This calculation involved only the ten values in the CPT and 
their complements (1 - the CPT value), all of which were easy 
to estimate.
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(3)(As an aside, note that even if both John and Mary call, the 
probability that a Burglary is occurring much less than half 
(but it would still be wise to call the police.)  In fact, an 
implication of the fact that the probability of Burglary is 
0.001 is that there would be an expected interval of almost 
three years between burglaries - but since John giving a false 
alarm has probability 0.05 we would expect about 50 false 
alarm calls from him in this same period!

C. In the above example, we were able to manually construct a Bayesian 
network on the basis of knowledge of the situation.  In many cases, 
though, a structure like this may exist but may not be obvious.  

1. It is possible, though to use machine learning to learn the structure 
of a Bayesian network from the data, by identifying parent-child 
relationships (hence conditional independence) implied by the data.  
 

This is done by calculating the extent to which various potential 
structures  exhibit the kind of "shielding" of variables from 
ancestors of parents that shows up in a Bayesian network.

2. One writer gives the following example: (From Shi, Zongzhi 
Advanced Artificial Intelligence p. 246-247)

a) The following actual data comes from a study on college plans of 
Wisconsin high school seniors.  The survey included data on

(1)Sex (SEX) (male, female)
(2)Socioeconomic status (SES) (low, lower middle, upper middle, 

high)
(3)Intelligence quotient (IQ) (low, lower middle, upper middle, high)
(4)Parental encouragement (PE) (low, high)
(5)College plans (CP) (yes, no)  
 
PROJECT
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(6)The tables show counts of the number of surveys in which 
various combinations of values from the variables occur - e.g. 
the first entry is SEX = male, SES = low, IQ = low, PE = low, 
CP = yes.

b) Probabilities for various possible structures were calculated, 
based on the assumption that SEX did not depend on any other 
variable, and that no other variable depended on CP.  Two 
possible structures were the most probable structures implied by 
the data.  
 
PROJECT

c) A curious feature is that these two structures differed only in the 
direction of the arrow connecting IQ and PE.  Also unusual was 
the fact is that they showed SES being the parent of IQ.  
 
The researchers hypothesized the existence of a hidden variable 
which influenced both SES and IQ.  When a new run was done 
with this additional variable (for which, of course, there were no 
known values), the following resulted as the most probable 
structure - also much more probable of either of the other two.  
 
PROJECT

III.Summary

A.Naieve Bayesian learning is used widely in machine learning,  

B. Bayesian network structures can be learned from data - and once the 
network is learned, the necessary conditional probabilities can also be 
extracted from the data.
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